

His-tag Protein Purification Kit PRODUCT DATA SHEET

His-tag Protein Purification Kit

Cat No: AKIT-His-IDA-Ni

Description

His-tag Protein Purification Kit is composed of His-tag protein agarose magnetic bead and optimized prefabricated buffer and 50 mL magnetic rack for the purification of His-tag recombinant proteins expressed by fusion of various expression systems.

For custom sizes, formulations or bulk quantities please contact our customer service department.

Website: www.abvigen.com Phone: +1 929-202-3014 Email: info@abvigenus.com

Kit Composition

His-tag protein agarose magnetic bead	10 mL (50% v/v)
Binding/Balancing buffer (2 ×)	100 mL
Washing buffer (5 ×)	100 mL
Elution buffer	100 mL
Protein quick stain solution	50 mL
SDS-PAGE Sample Loading buffer (5 ×)	10 mL
Magnetic rack	50 mL double row four well

Operation Process

Dilute the binding/balancing buffer (2 \times) and wash buffer (5 \times) to 1 \times using ultra-pure water before the experiment.

1. Sample preparation

Take Escherichia coli expression system, 500 mL induced bacterial solution as an example.

- 1) Centrifuge at 4°C for 30 min (4000 x g) to collect bacteria and discard supernatant.
- 2) The bacteria are suspended with a pre-cooled binding/balancing buffer (1 ×), with the addition of appropriate inhibitors, such as protease inhibitors (PMSF) or other protease inhibitors, if needed.

Note: The added inhibitors should not affect the performance of **His-tag protein agargo magnetic bead**, and the crushing solution should not contain EDTA, EGTA and other chelating agents, DTT, mercaptoethanol and other reducing agents, urea, guanidine hydrochloride and other denaturants.

3) Use ultrasonic crushing method to break the bacteria on the ice until the sample is broken completely.

Optional: If the lysate is too thick, RNase A (final concentration 10 μ g/mL) and DNase I (final concentration 5 μ g/mL) can be added and incubated on ice for 10 $^{\sim}$ 15 min.

4) Centrifuge at 4° C for 20 min (12,000 x g), separation of supernatant and precipitation, and filtration for impurity removal. Retain samples of supernatant and precipitation for subsequent testing.

2. Purification of recombinant His-tag fusion protein

- 1) **His-tag protein agarose magnetic beads** were thoroughly mixed, 2 mL magnetic bead suspension was taken, placed in a 50 mL centrifuge tube, and 10 mL **binding/balancing buffer (1 x)** was added, after fully mixed, magnetic separation was performed, supernant was discarded, and the above steps were repeated once.
- 2) The prepared fusion protein supernatant containing His-tag was added to the treated magnetic beads, and after mixing, the centrifuge tube was placed on the mixing machine and incubated at room temperature for $1 \sim 2$ h. (Can also be incubated at $2 \sim 8$ °C for $2 \sim 4$ h or overnight)
- 3) After incubation, the centrifuge tube is placed on the magnetic rack for magnetic separation, the supernatant is absorbed, and the supernatant is placed at $2 \sim 8^{\circ}$ C as a flow through for subsequent testing. 15 mL washing buffer (1 ×) was added to the centrifuge tube and mixed in the mixer for $10 \sim 15$ min, and then magnetic separation was performed to absorb the supernatant (reserved for sampling and testing). Repeat the preceding steps three times.
- 4) Add 1 mL eluent buffer, blow and mix for 10 $^{\sim}$ 20 times, and collect Ep tubes with superclear to 1.5mL through magnetic rack. Repeat the operation to collect 5 $^{\sim}$ 10 tubes of eluent respectively.

5) SDS-PAGE test

The resulting sample (including run-off, washing solution and eluent) and the original sample were tested for purification using SDS-PAGE. Add an appropriate amount of **protein fast dyeing solution** to immerse the PAGE glue, and then shake it on a shaking table. The results can be observed after dyeing for $10 \sim 30$ min.

Note: The target protein should be dialysis or ultrafiltration to remove imidazole and other impurities before storage, and then subpackaged and frozen to -80°C.

(Optional) Megnetic Bead Regeneration and Storage

Megnetic bead regeneration steps please refer to or directly buy our company His-tag protein purification regeneration kit.

After the regeneration of the magnetic bead, it can be used immediately. If it is not used immediately, it is necessary to add equal volume 20% ethanol and store it at $2 \sim 8$ °C.

Problem Solving

Problem	Reason	Solution
There was no target protein	The protein may be an	The lysate can be detected
in the eluent	inclusion body, but the	by electrophoresis to
	supernatant has no protein	determine whether the
		supernatant contains the
		target protein, and the
		inclusion body protein needs
		to be purified according to
		the inclusion body protein.
	Underexpression	Optimize expression
	·	conditions.
	The target protein is weakly	Reduce the imidazole
	bound and washed off	concentration.
	during the scrubbing step	
	The target protein is	Add appropriate protease
	degraded by protease	inhibitors, such as PMSF, to
	acgiuded by processe	the cleavage step or washing
		step.
	The target protein cannot be	Increase the imidazole
	effectively eluted from the	concentration.
	magnetic bead	
	magnetic beau	
		exfoliated with EDTA
		solution of 10 ~ 100 mM and
		the target protein was

		obtained.
The purified target protein is	The laundry is not thorough	Increase washing times.
not pure	The sample contained other	The cleaning conditions
	histidine label proteins	were optimized by adjusting
		the concentration of
		imidazole. The elution
		components are then
		further purified by using
		other purification methods
		(e.g., ion exchange,
		hydrophobic, etc.).
Protein precipitation occurs	Concentration is too large	Moderately diluted protein.
during binding	Protein aggregation	Add a stabilizer, such as
		0.1% Triton X-100 or
		Tween20, to the sample and
		all buffers.
	Operating temperature is	Operate at 2-8°C.
	too high	

Email: info@abvigenus.com

© Abvigen Inc All Rights Reserved

Ordering Information

Website: www.abvigen.com

Phone: +1 929-202-3014

Email: <u>info@abvigenus.com</u>